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OVERVIEW

1. INTRODUCTION. 
Quantum computing. 

Silicon QC. Kane proposal with donors.

Acceptor based QC.

2. PROBLEM: ACCEPTORS NEAR AN INTERFACE

3. RESULTS
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Why build a QC?
Information security. Shor algorithm for prime factorization. 
Quantum cryptography.

Database search. Grover algorithm.

Quantum simulations.
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 QC proposals
 Ion traps

 NMR

 Topological states

 Electron spin in SC (Si, 
Ge, GaAs…)

 NV centers

 Josephson junctions

 Photon polarization

 Nuclear spin in SC (Si)



WHY SILICON?

Ideal environment for spin qubits. Weak SO-coupling and 
isotopes with zero nuclear spin.

Spin coherence times > 30s (Phosphorus nucleus). J. Muhonen et. al., 
Nature Nanotechnology, 9, 986 (2014)

Availability of  the state-of-the-art crystal growth, processing, 
isotope engineering technologies and well known physical
properties

Possible integration with ‘classical’ Si devices

5



6

Dopant-based silicon QC 
B.E.Kane, Nature 393, 133 (1998);
Fortschr. Phys. 48, 9 (2000)

Building block is the donor electron-
nucleus system

P donors in Si: nuclear spin ½
Electron spin coupled to
nuclear spin by hyperfine
interaction

 A gate controls the hyperfine interaction

 J gate controls the overlap of  electrons

 Readout: Spin-dependent tunneling
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Logic operations in Si:31P – 1 qubit operations
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EXCHANGE

J-gate
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Pulse duration τσ:

a ‘swap’ occurs

Loss & DiVincenzo PRA (1998)
Kane Nature (1998)
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Logic operations in Si:31P – 2 qubit operations
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Experimental status

 High fidelity single shot readout of  electron and nuclear spin. Pla et al., Nature 489, 541 
(2012). J. Pla et al., Nature 496, 334 (2013)

 Electron spin relaxation and coherence times > T1 in the order of  hundreds of  seconds. T2= 
10s. Nature Materials 11, 143-147 (2012)

 Nuclear spin coherence times > 30 s. Nature Nanotechnology 9, 986 (2014)

 A-gate implementation. Laucht et al. Science Advances Vol. 1, no. 3, e1500022 (2015)

 Fidelities above 99.9% for single and two-qubit operations (Electron and nucleus spins). J. 
Phys: Condens. Matter 27, 154205 (2015)
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Problems with donors

 Valley degeneracy. Exchange oscillations. Koiller et al., 
PRL 88, 027903

Small coupling to electric fields

Presenter
Presentation Notes
.



ACCEPTOR BASED QUBITS

No valley degree of  freedom.

Exploit long range dipolar inter-qubit coupling, Golding and 
Dykman, cond-mat/0309147.

Exploit spin-orbit interaction (however, SO is also a cause of  
decoherence)

Couple spins to phonons, Ruskov and Tahan, PRB 88, 064308 (2013).

Couple spins to oscillating electric fields, Salfi et al PRL 116, 246801.
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ACCEPTOR BASED QC

 Gate pair controls a single acceptor

 Exchange gate or dipolar coupling for acceptor-acceptor
interaction

 Rogge et al., Patent PCT/AU2014/000003
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ACCEPTOR BASED QC

 Acceptor GS is 4-fold degenerate (J=3/2)

 Quantum confinement, strain and E fields partially lift the
degeneracy

 Magnetic fields removes degeneracy

Ruskov and Tahan: Phys. Rev. B 88, 064308



FOCUS
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How are acceptor bound states affected by

the proximity of  an interface?

• Binding energies

• Symmetries
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ACCEPTOR CLOSE TO AN 
INTERFACE
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Insulator

Semiconductor

A-

d

A- image

h+

h+ image

Assume a hard wall boundary condition at z=-d

z=0

Central cell correction:

Image charges:



VARIATIONAL BASIS SET
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Hard-wall

l’=L-|Lz|

cylindrical
variables n’=n-L-1, n>L

set of  values, i≤4 

IR Degeneracy Fz=Jz+Lz

Γ6 2 ±1/2+4n
Γ7 2 ±3/2+4n
Γ8 4 any half integer

The interface reduces 
the symmetry and Γ8
becomes a reducible 
representation: 

Γ8=Γ6⊕Γ7
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B in Si, Q’=0

Γ6

Γ7

Γ8

Γ6

Γ8



RESULTS: ENERGY 
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B in Si, Q’=0

Γ8
Energy spectrum is
compressed

Γ6

Γ8
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Γ6 Γ7

d=2 nm

d=7.5 nm

d=1.5 nm

Parallel to interface

Different shapes
of  the wave-
funtions lead to
the ground state
energy splitting.

GROUND STATE 
WAVE-FUNCTIONS
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EFFECT OF IMAGE 
CHARGES
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B in Si, Q’=0 B in Si, Q’=-0.5

Enhanced binding,
reduced compression

For Si/SiO2 interface Q’=-0.5
For Si/vacuum interface Q’=-0.84  larger enhancement



EFFECT OF CENTRAL CELL
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The interface deforms the hole wf away from the Coulomb center.
So, near the interface the CC effects are lost.



GERMANIUM 
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B in Si, Q’=0 B in Ge, Q’=0



Si:B GROUND STATE 
SPLITTING
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Experimental points from: Mol et al APL 106, 203110 (2015).

B in Si, Q’=-0.84



CONCLUSIONS
Quantum confinement leads to a reduction of  the binding
energies close to the interface and a compression of  the
energy spectrum.

Dielectric mismatch with the insulator enhances the
binding energy. 

The symmetry reduction at the interface leads to the
ground state splitting. 

Similar results are obtained for Ge.

The reduction of  the symmetry by the interface can be used
to enhance the dipolar coupling of  the acceptors (Culcer et 
al Nanotechnology, 27, 24 (2016). and Rogge et al. PRL 116, 
246801)
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