Holes bound to acceptors as qubits: Tunability, coherence and entanglement APPLIED PHYSICS LETTERS 113 (1), 012102

José Carlos Abadillo-Uriel

jcgau@icmm.csic.es

Instituto de Ciencia de Materiales de Madrid, CSIC

COLLABORATORS

Joe Salfi Sven Rogge Dimitrie Culcer CQC2T School of Physics, UNSW, Sydney

Xuedong Hu

María J. Calderón

University at Buffalo, SUNY

ICMM-CSIC, Madrid

MINECO, CSIC FLEET, CQC2T, UNSW, ARC DECRA US ARO

Instituto de Ciencia de Materiales de Madrid, ICMM-CSIC Centre for Quantum Computation and Communication Technology, School of Physics, Australian Research Council Centre of Excellence in Low-Energy Electronics Technologies, University of New South Wales University at Buffalo, SUNY

OUTLINE

- 1. BACKGROUND & MOTIVATION
- 2. ACCEPTOR DESCRIPTION
- 3. LH ACCEPTOR QUBIT 101
- 4. IN-PLANE B FIELD. NEW PHENOMENA
- 5. EXPERIMENTAL APPLICATIONS
- 6. CONCLUSIONS

DOPANT BASED QUANTUM COMPUTING

Proposed by Bruce Kane, Nature 393, 133 (1998).

- P donors in Si: nuclear spin $\frac{1}{2}$
- Electron spin coupled to nuclear spin by hyperfine interaction

- A gate controls the hyperfine interaction (for 1 qubit gates)
- J gate controls the overlap of electrons (for 2 qubit gates)
- Readout: spin-to-charge conversion

DONORS: CURRENT STATUS

- High fidelity single shot readout of electron and nuclear spin. Pla et al., Nature 489, 541 (2012). J. Pla et al., Nature 496, 334 (2013)
- Electron spin relaxation and coherence times > T_1 in the order of hundreds of seconds. T_2 = 10s. Nature Materials 11, 143-147 (2012)
- Nuclear spin coherence times > 30 s. Nature Nanotechnology 9, 986 (2014)
- A-gate implementation. Laucht et al. Science Advances 1, e1500022 (2015)
- Fidelities above 99.95-99.99% for single qubit operations (electron and nuclear spin respectively). J. Phys: Condens. Matter 27, 154205 (2015)

DONORS: CHALLENGES

• Valley degeneracy: Exchange oscillations

• Small SO interaction: Slow interactions

 Oscillating Magnetic fields: Experimentally challenging and require too much power

MOTIVATION

- Electrical spin manipulation: **spin-orbit qubits**
 - Spin-orbit enhances the coupling to electric fields
 - Single-qubit operations: EDSR
 - Also scalability e.g. cQED, dipole-dipole coupling
 - Electric fields are easier to apply and localize than magnetic fields
- Current problems
 - Spin-orbit also enhances coupling to stray fields ~ noise and phonons
 - Scalability: exchange gates vulnerable to electrical noise

WHY ACCEPTORS?

Confinement potential is free and reproducible cf. donor Holes have interesting properties

- Strong spin-orbit coupling in the valence band (L=1)
- Limited coupling to nuclear spins
- Effective spin-3/2 completely different from electrons
- No valleys so no extra Hilbert space complications
- Enhanced dipole-dipole interaction
- Flexibility can work in HH or LH manifolds

VALENCE BANDS

Strong spin-orbit interaction Effective J=3/2 GS

Luttinger and Kohn, Phys. Rev. 97, 869 (1955) Si:B GS is 45 meV on top of VB 1st excited state is 21 meV below

Van de Heidjen et al, Nano Letters 14, 1492 (2014)

FOCUS

Acceptor in Si close to a SiO_2 interface.

ACCEPTOR HAMILTONIAN

$H = H_{KL} + H_{BP} + H_c + H_{inter} + H_F + H_B + H_{T_d}$ -Kohn-Luttinger Hamiltonian for the VB

INTUITIVE BUILDING THE EFFECTIVE GS HAMILTONIAN:

States with $|m_j|=3/2$ are predominantly HH like

 $|m_{J}|=1/2$ are

predominantly LH like

INTUITIVE BUILDING THE EFFECTIVE GS HAMILTONIAN: BREAKING DEGENERACIES

$$H_{\text{eff}} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & \Delta_{HL} & 0 & 0 \\ 0 & 0 & \Delta_{HL} & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Bir-Pikus Hamiltonian Uniaxial (001) strain

In-plane compressive HH ground state

In-plane tensile LH ground state

Bir, Butekov, Pikus J. Phys. Chem. Solids 24, 1467 (1963); 24, 1475 (1963)

(4)

INTUITIVE BUILDING THE EFFECTIVE GS HAMILTONIAN: BREAKING DEGENERACIES

J.C. Abadillo-Uriel, M.J.C. Nanotech, 27, 024003 (2016); Mol et al APL 106, 203110 (2015)

BUILDING THE EFFECTIVE GS HAMILTONIAN: MIXING LH-HH

$$H_{\text{eff}} = \begin{pmatrix} 0 & 0 & -ipF_z & 0\\ 0 & \Delta_{HL} & 0 & -ipF_z\\ ipF_z & 0 & \Delta_{HL} & 0\\ 0 & ipF_z & 0 & 0 \end{pmatrix}$$

$$p = e \int_{0}^{a} f^{*}(r) r f(r)$$
nis term mixes LH and HH.

001 Si:B 010 100 100

p depends

- acceptor "depth"
- electric field
- distance to interface

Bir, Butekov, Pikus J. Phys. Chem. Solids 24, 1467 (1963); 24, 1475 (1963)

BUILDING THE EFFECTIVE GS HAMILTONIAN: BROKEN DEGENERACY + MIXING LH-HH

2 branches (Kramers doublets):

$$E_{u} = \frac{1}{2} (\Delta_{HL} + \sqrt{\Delta_{HL}^{2} + 4p^{2}F_{z}^{2}})$$

$$E_{l} = \frac{1}{2} (\Delta_{HL} - \sqrt{\Delta_{HL}^{2} + 4p^{2}F_{z}^{2}})$$

$$F_{z}$$

$$F_{z}$$

The qubit is defined in the lower branch with probability amplitudes on LH and HH:

$$a_{L} = E_{l} / \sqrt{E_{l}^{2} + p^{2} F_{z}^{2}}$$
$$a_{H} = pF_{z} / \sqrt{E_{l}^{2} + p^{2} F_{z}^{2}}$$

BUILDING THE EFFECTIVE GS HAMILTONIAN: IN-PLANE MAGNETIC FIELD IN CRYSTAL AXIS

$$\{3/2, 1/2, -1/2, -3/2\}$$

$$H_{eff} = \begin{pmatrix} 0 & \frac{\sqrt{3}}{2}\varepsilon_{Z} & -ipF_{z} & 0\\ \frac{\sqrt{3}}{2}\varepsilon_{Z} & \Delta_{HL} & \varepsilon_{Z} & -ipF_{z}\\ ipF_{z} & \varepsilon_{Z} & \Delta_{HL} & \frac{\sqrt{3}}{2}\varepsilon_{Z} & 0\\ 0 & ipF_{z} & \frac{\sqrt{3}}{2}\varepsilon_{Z} & 0 \end{pmatrix}$$

$$\mathcal{E}_{Z} = g_{1}\mu_{B}B$$

$$\mathcal{E}_{Z} = g_{1}\mu_{B}B$$

HAMILTONIAN IN THE QUBIT BASIS

Splittings and mixings come from $\epsilon_{\rm z}.$ Depend on the LH-HH mixing and the Zeeman interaction.

ENERGY LEVELS

SINGLE-QUBIT MANIPULATION

Lack of inversion symmetry: Effective Rashba interaction

$$\hat{H}_E = \begin{pmatrix} 0 & 0 & E_1 & E_2 \\ 0 & 0 & E_2 & E_1 \\ -E_1 & E_2 & 0 & 0 \\ E_2 & -E_1 & 0 & 0 \end{pmatrix}$$

Mixes qubit-excited branches

 $E_1, E_2 \propto \alpha$

$$H_{\rm EDSR}^{(2)} = \alpha \frac{\varepsilon_{Zo}}{\Delta} F_{\parallel} \sigma_x$$

This interaction is maximized at sweet spot

Single gate times: 0.2 ns at the sweet spot for acceptor at 4.6 nm.

TWO-QUBIT MANIPULATION

Two-qubit interaction: Dipole-Dipole interaction

$$V_{dd} = (\mathbf{v}_a \cdot \mathbf{v}_b R^2 - 3(\mathbf{v}_a \cdot \mathbf{R})(\mathbf{v}_b \cdot \mathbf{R}))/4\pi\epsilon R^5$$

v are spin dependent charge dipoles

$$H_{dd} \propto \alpha^a \alpha^b \varepsilon^a_{Zo} \varepsilon^b_{Zo} (\sigma^1_+ + \sigma^1_-) (\sigma^2_+ + \sigma^2_-) / R^3$$

For 20 nm : $\sqrt{SWAP} = 2ns$

We can also use exchange for entanglement No valley interference effects like in donor qubits Circuit QED using microwave photons

DECOHERENCE LIMITATIONS Strong spin-orbit coupling: electrical noises cause dephasing

Outleit is inconstitute to the errore region

Qubit is insensitive to charge noise fluctuations to first order at sweet spots

$$-\frac{\sqrt{3}}{2}|\pm 1/2\rangle \mp i\frac{1}{2}|\mp 3/2\rangle$$

Phonon-induced relaxation

$$\frac{1}{T_1} = \frac{(\hbar\omega)^3}{20\hbar^4\pi\rho} C_d \left(\frac{\varepsilon_{Zo}}{\Delta}\right)^2$$

 T_1 =20µs for B=0.5T at sweet spot

Still 10⁵ operations in this time can be performed

ARBITRARY IN-PLANE MAGNETIC FIELD

 $F_{z}(MV/m)$

 $\{3/2, 1/2, -1/2, -3/2\}$ $-ipF_z$ $\frac{\sqrt{3}}{2}\varepsilon_Z$ В confinement, gate 0 () $B \parallel y$ strain mixing $\frac{\sqrt{3}}{2}\varepsilon_Z^*$ Δ_{HL} $-ipF_z$ ε_Z HH $H_{\rm eff} =$ $\frac{\sqrt{3}}{2}\varepsilon_Z$ $1\Gamma_8^+$ $\Delta < 1 \text{ meV}$ $i p F_z$ Δ_{HL} ε_Z^* $\frac{\sqrt{3}}{2}\varepsilon_Z^*$ qubit ipF_z $\left(\right)$ $\left(\right)$ Eigenenergies(ueV) 0.5 $\phi=0$ 0.25 $\varepsilon_Z = g_1 \mu_B B \to g_1 \mu_B B e^{i\phi}$ 0 -0.25 20 30 10

HAMILTONIAN IN THE QUBIT BASIS

Splittings and mixings come from ε_z. They are complex functions of φ.

Qubit-upper states interaction terms

 Z_2

 Z_1

0

 $E_u + \frac{1}{2}\varepsilon_{Zu}$

 Z_1

 Z_2

 $E_u - \frac{1}{2}\varepsilon_{Zu}$

Strong magnetic field orientation dependence

MAGNETIC FIELD DEPENDENCE

Two sweet spots:

 $\sqrt{3}\Delta_{HL}$ Isotropic sweet spot F_z^* 2p

$$-\frac{\sqrt{3}}{2}|\pm1/2\rangle\mp i\frac{1}{2}|\mp3/2\rangle$$

Anisotropic (dependent on ϕ) sweet spot

G-FACTOR IN-PLANE ANISOTROPY

SPIN POLARIZATION AT SWEET SPOTS

At F_z^* the spin polarization is in the $-\pi/4+n\pi$ direction

The g-factor is 0 in the perpendicular direction and maximum in the parallel direction.

The maximum corresponds to a complete decoupling of the lower and upper branches: decoherence free subspace.

SPIN POLARIZATION AT SWEET SPOTS

φ

$$H_{\rm op} = \begin{pmatrix} E_l - \frac{1}{2}\varepsilon_{Zl} & 0 & Z_1 & Z_2 \\ 0 & E_l + \frac{1}{2}\varepsilon_{Zl} & Z_2 & Z_1 \\ Z_1 & -Z_2 & E_u - \frac{1}{2}\varepsilon_{Zu} & 0 \\ -Z_2 & Z_1 & 0 & E_u + \frac{1}{2}\varepsilon_{Zu} \end{pmatrix}$$

Decoherence free subspace $[H_{inter} + H_{T_d}, H_B] = 0$

CONSEQUENCES: T₁

This mechanism is canceled to 1st order: -When effective g-factor is 0 -In the DFS

CONSEQUENCES: SINGLE-QUBIT MANIPULATION

EDSR coupling depends on ϕ

EDSR slows down near the DFS T1 diverges faster than EDSR at DFS

The number of single-qubit operations in T1 diverges at DFS -In real devices this will be limited by second order processes. -Still carefully choosing ϕ should strongly reduce the T1 limitations

CONSEQUENCES: TWO-QUBIT MANIPULATION

Two-qubit interaction: Dipole-Dipole interaction

 $H_{dd} \propto \alpha^a \alpha^b \varepsilon^a_{Zo} \varepsilon^b_{Zo} G(F_z^a, F_z^b, \phi, \theta_E) (\sigma^1_+ + \sigma^1_-) (\sigma^2_+ + \sigma^2_-) / R^3$

T1 diverges as fast as Hdd goes to zero at DFS: No direct improvement

But the modulating function depends on the gate fields: $G(F_z^a, F_z^b, \phi, \theta_E)$ -Two qubits at isotropic sweet spot: G is maximized and isotropic -With at least one qubit at the Anisotropic sweet spot this coupling becomes anisotropic

CONSEQUENCES: TWO-QUBIT MANIPULATION

Two-qubit interaction: Dipole-Dipole interaction

 $H_{dd} \propto \varepsilon^a_{Zo} \varepsilon^b_{Zo} G(F^a_z, F^b_z, \phi, \theta_E) (\sigma^1_+ + \sigma^1_-) (\sigma^2_+ + \sigma^2_-)$

 $\mathbf{R} = R\cos(\theta_E)\hat{x} + R\sin(\theta_E)\hat{y}$

MAGIC ANGLES

ELECTRICAL CONTROL OF TWO-QUBIT OPERATIONS

-Two-qubit operations are tunable in one direction

-In the other direction cQED can be used

-We devise two different protocols

ELECTRICAL CONTROL OF TWO-QUBIT OPERATIONS

Protocol 1:

 $-\phi = 40^{\circ} (50^{\circ})$

-Single qubit operations in ASS-ASS -Two qubit operations in ISS-ISS Protocol 2: $-\phi=15^{\circ}(75^{\circ})$

-Single qubit operations in ISS-ASS -Two qubit operations in ISS-ISS

PROTOCOL 1 VS PROTOCOL 2

-The angles in P1 is near DFS: Enhanced single-qubit operations

-The angles in P2 implies ISS very close to ASS: Reduced charge noise exposure during the adiabatic sweep

CONCLUSIONS

arXiv:1706.08858

Despite the strong SOC acceptor qubits allow fast operations and yet have desirable coherence properties: Holes are coherent!

The lower local symmetry of the acceptor + spin 3/2 physics of the GS give rise to interesting magnetic phenomena:

- Dramatic in-plane g-factor anisotropy
- Decoherence Free Subspace
- Two qubit coupling anisotropy

This makes the in-plane magnetic field orientation an unexpected knob that can be used after to:

- Extend the qubit lifetime
- Modulate the two-qubit couplings by changing gate voltages

