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DOPANT BASED
QUANTUM COMPUTING

Proposed by Bruce Kane, Nature 393, 133 (1998). 

• P donors in Si: nuclear spin ½
• Electron spin coupled to nuclear 

spin by hyperfine interaction

 A gate controls the hyperfine interaction (for 1 qubit gates)
 J gate controls the overlap of electrons (for 2 qubit gates)
 Readout: spin-to-charge conversion



DONORS: 
CURRENT STATUS

 High fidelity single shot readout of electron and nuclear spin. Pla et al., 
Nature 489, 541 (2012). J. Pla et al., Nature 496, 334 (2013)

 Electron spin relaxation and coherence times > T1 in the order of 
hundreds of seconds. T2= 10s. Nature Materials 11, 143-147 (2012)

 Nuclear spin coherence times > 30 s. Nature Nanotechnology 9, 986 
(2014)

 A-gate implementation. Laucht et al. Science Advances 1, e1500022 
(2015)

 Fidelities above 99.95-99.99% for single qubit operations (electron and 
nuclear spin respectively). J. Phys: Condens. Matter 27, 154205 (2015)



DONORS: 
CHALLENGES

 Valley degeneracy: Exchange oscillations

 Small SO interaction: Slow interactions

 Oscillating Magnetic fields: Experimentally challenging 
and require too much power



MOTIVATION
• Electrical spin manipulation: spin-orbit qubits

• Spin-orbit enhances the coupling to electric fields
• Single-qubit operations: EDSR
• Also scalability e.g. cQED, dipole-dipole coupling
• Electric fields are easier to apply and localize than 

magnetic fields

• Current problems
• Spin-orbit also enhances coupling to stray fields ~ 

noise and phonons
• Scalability: exchange gates vulnerable to electrical 

noise



WHY ACCEPTORS?
Confinement potential is free and reproducible cf. donor
Holes have interesting properties

• Strong spin-orbit coupling in the valence band (L=1)

• Limited coupling to nuclear spins

• Effective spin-3/2 – completely different from electrons

• No valleys so no extra Hilbert space complications

• Enhanced dipole-dipole interaction

• Flexibility – can work in HH or LH manifolds



VALENCE BANDS
Strong spin-orbit interaction
Effective J=3/2 GS

Luttinger and Kohn, Phys. Rev. 97, 869 (1955)
Si:B GS is 45 meV on top of VB
1st excited state is 21 meV below

mJ=±1/2

mJ=±3/2

J=3/2

Van de Heidjen et al, Nano Letters 14, 
1492 (2014) 



FOCUS

Acceptor in Si close to a SiO2 interface.



-Kohn-Luttinger Hamiltonian for the VB

-Bir-Pikus Hamiltonian for the strain

-Coulomb impurity

-Si/SiO2 Interface

-Electric and magnetic fields

-Td symmetry of the ion

ACCEPTOR HAMILTONIAN

EMA+SW transformation

4x4 Effective low energy

Hamiltonian

For the 4-fold degenerate

GS

Presenter
Presentation Notes
Td term allows a coupling linear in the electric field.



INTUITIVE BUILDING THE EFFECTIVE GS 
HAMILTONIAN: 

mJ=±1/2

mJ=±3/2

J=3/2

States with |mJ|=3/2 are predominantly HH like

|mJ|=1/2 are 

predominantly LH like



Bir-Pikus Hamiltonian

Bir, Butekov, Pikus J. Phys. Chem. Solids 24, 1467 (1963); 24, 1475 (1963)

Uniaxial (001) strain

In-plane compressive
HH ground state

(4)
±1/2

±3/2

In-plane tensile
LH ground state

(4)
±1/2

±3/2

INTUITIVE BUILDING THE EFFECTIVE GS 
HAMILTONIAN: BREAKING DEGENERACIES 

Presenter
Presentation Notes
May be achieved using suitable Si/SiGe multilayers. The lattice constant of Ge is 0.5658 while the lattice constant of Si is 0.541. Compressive strain (001): Ground state is Heavy Hole
Tensile strain (001): Ground state is Light Hole




INTUITIVE BUILDING THE EFFECTIVE GS 
HAMILTONIAN: BREAKING DEGENERACIES 

J.C. Abadillo-Uriel, M.J.C. Nanotech, 27, 024003 (2016); Mol et al APL 106, 203110 (2015) 

Quantum confinement +
dielectric mismatch

SiO2

Si(001)
A-

d

A- image

h+

h+ image

HH ground state



BUILDING THE EFFECTIVE GS 
HAMILTONIAN:
MIXING LH-HH

This term mixes LH and HH.

p depends 
• acceptor “depth”
• electric field
• distance to interface Bir, Butekov, Pikus J. Phys. Chem. Solids 24, 

1467 (1963);  24, 1475 (1963)



2 branches (Kramers doublets): 

Fz

The qubit is defined in the lower branch with probability
amplitudes on LH and HH:

Fz

aL=1

aH=0

GS

BUILDING THE EFFECTIVE GS 
HAMILTONIAN:

BROKEN DEGENERACY + MIXING LH-HH



BUILDING THE EFFECTIVE GS HAMILTONIAN:
IN-PLANE MAGNETIC FIELD IN CRYSTAL AXIS



HAMILTONIAN IN THE
QUBIT BASIS

Qubit branch-Excited branch interaction

Splittings and mixings come from εz. 
Depend on the LH-HH mixing and the Zeeman interaction.



ENERGY LEVELS

GS

Sweet spot at

(There is another sweet spot at Fz=0)
Salfi et al PRL (2016)

Qubit is insensitive to charge
noise in these sweet spots



SINGLE-QUBIT
MANIPULATION

Lack of inversion symmetry: Effective Rashba interaction

This interaction is maximized at sweet
spot
Single gate times: 0.2 ns at the sweet
spot for acceptor at 4.6 nm.

Mixes qubit-excited branches



TWO-QUBIT
MANIPULATION

Two-qubit interaction: Dipole-Dipole interaction

For 20 nm : √SWAP = 2ns

We can also use exchange for entanglement
No valley interference effects like in donor qubits
Circuit QED using microwave photons

v are spin dependent charge dipoles



DECOHERENCE 
LIMITATIONS

Qubit is insensitive to charge noise
fluctuations to first order at sweet spots

Strong spin-orbit coupling: electrical noises cause dephasing

Phonon-induced relaxation

T1=20μs for B=0.5T at sweet
spot

Still 105 operations in this time
can be performed



ARBITRARY IN-PLANE MAGNETIC FIELD



HAMILTONIAN IN THE
QUBIT BASIS

Qubit-upper states interaction terms

Splittings and mixings come
from εz. 

They are complex
functions of φ.

Strong
magnetic
field
orientation
dependence



MAGNETIC FIELD 
DEPENDENCE

Two sweet spots:
• Isotropic sweet spot Anisotropic (dependent on φ) 

sweet spot



G-FACTOR IN-PLANE ANISOTROPY

Fz=18MV/m

Fz=0

Fz=22MV/m



SPIN POLARIZATION AT 
SWEET SPOTS

At Fz* the spin polarization is in the –π/4+nπ direction

0

π/2

π

3π/2

g-factor 

The g-factor is 0 in the
perpendicular direction and 
maximum in the parallel direction.

The maximum corresponds to a 
complete decoupling of the lower
and upper branches: 
decoherence free subspace.



SPIN POLARIZATION AT 
SWEET SPOTS

Fz*

Presenter
Presentation Notes
There is a sign change in g. 



Decoherence free subspace



CONSEQUENCES: T1

Phonon-induced relaxation

This mechanism is canceled to 1st order:
-When effective g-factor is 0
-In the DFS



CONSEQUENCES: SINGLE-
QUBIT MANIPULATION

EDSR coupling depends on

The number of single-qubit operations in T1 diverges at DFS
-In real devices this will be limited by second order processes. 
-Still carefully choosing ϕ should strongly reduce the T1 limitations

EDSR slows down near the DFS
T1 diverges faster than EDSR at DFS



CONSEQUENCES: TWO-
QUBIT MANIPULATION

Two-qubit interaction: Dipole-Dipole interaction

T1 diverges as fast as Hdd goes to zero at DFS: No direct improvement

But the modulating function
depends on the gate fields:
-Two qubits at isotropic sweet spot: G is maximized and isotropic
-With at least one qubit at the Anisotropic sweet spot 
this coupling becomes anisotropic



CONSEQUENCES: TWO-
QUBIT MANIPULATION

Two-qubit interaction: Dipole-Dipole interaction



MAGIC ANGLES






ELECTRICAL CONTROL OF 
TWO-QUBIT OPERATIONS

-Two-qubit operations are
tunable in one direction

-In the other direction cQED
can be used

-We devise two different
protocols



ELECTRICAL CONTROL OF 
TWO-QUBIT OPERATIONS

Protocol 1:
-ϕ=40º (50º)
-Single qubit operations in ASS-ASS
-Two qubit operations in ISS-ISS

Protocol 2:
-ϕ=15º (75º)
-Single qubit operations in ISS-ASS
-Two qubit operations in ISS-ISS



PROTOCOL 1 VS 
PROTOCOL 2

-The angles in P1 is near DFS:
Enhanced single-qubit
operations

-The angles in P2 implies ISS
very close to ASS: 

Reduced charge noise
exposure during the
adiabatic sweep



CONCLUSIONS
Despite the strong SOC acceptor qubits allow fast operations and yet have
desirable coherence properties: Holes are coherent! 

The lower local symmetry of the acceptor + spin 3/2 physics of the GS give
rise to interesting magnetic phenomena:

• Dramatic in-plane g-factor anisotropy
• Decoherence Free Subspace
• Two qubit coupling anisotropy

This makes the in-plane magnetic field orientation an unexpected knob
that can be used after to:

• Extend the qubit lifetime
• Modulate the two-qubit couplings by changing gate voltages

arXiv:1706.08858
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